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Solution of Einstein’s equations for a line-mass of perfect fluid 
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Hill Road, London W8, UK 

Received 24 October 1978 

Abstract. A global solution of Einstein’s equations for an infinite line-mass of perfect fluid 
is given. The interior solution depends on two arbitrary constants, and both of these are 
needed to describe the exterior space-time. 

1. Introduction 

The exterior field of an infinite line-mass, hereafter called the Levi-Civita (LC) solution, 
was one of the first problems in general relativity to be solved exactly (Levi-Civita 
1919). The field can be interpreted in a Newtonian manner through a logarithmic 
gravitational potential which occurs in the metric. However, the solution shows three 
important differences from the Newtonian analogue. First, it appears to contain two 
genuine arbitrary constants instead of one (Marder 1958). Secondly, the topology 
conferred on the space-time by the infinite line-mass spearing through it makes the 
geometry globally non-Euclidean: the ratio of the circumference to radius of large 
circles centred on the mass is not 2 ~ .  Thirdly, there is a parameter m occurring in the 
logarithmic potential which is clearly connected with the mass per unit length, but with 
two values, namely m = 0 and m = k, for which space-time is flat. 

Representation of the line-mass by a singularity is unsatisfactory because it leaves 
open the question whether there exists any real matter which can give rise to the field. 
For this reason one should represent the line-mass by an interior solution of Einstein’s 
equations, and match this to the LC solution. This has been done previously for certain 
special interiors (Marder 1958, Raychaudhuri and Som 1962). In this paper I solve the 
problem for a perfect fluid interior with a certain equation of the state. The interior 
solution used is one given by Evans (1977) who, however, was not concerned with 
matching it in detail to the LC exterior. 

The most important conclusion of this work is to confirm the result of Marder that 
the LC solution contains two genuine arbitrary constants, which are determined, 
through the boundary conditions, by the state of the interior. 

In § 2 I give the interior solution in a form suitable to the matching problem which is 
solved in § 3. A physical interpretation of the global solution is given in 9 4 and the 
paper ends with a brief conclusion. 

2. The interior solution 

The interior solution is (in a notation somewhat different from that of Evans (1977)) 

ds 2 = - d r 2 - ~ - 1 / 3 ~ ~ ~ 2  kr d ~ ~ - k - ~ u - ~ ’ ~ s i n ~  kr d 4 2 + ~ 2 / 3  dt (2.1) 
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where 

U = cos' kr + 4q2 sin2 kr, 

and we allow the coordinates to range as follows: 

O s r G b  -m<z<m O S 4 S 2 7 r  -m<<<m, (2.3) 

the hypersurfaces 4 = 0 and = 27r being identified; b, k and 4 are positive constants. 
The density and pressure corresponding to (2.1) are 

p = k2(67r~2) -1 (5q2+~2)  (2.4) 

p = k2(67r~2) - ' (q2 -~2)  (2.5) 

p = 5 p  + Y 1 k 2 .  

so that the matter present has the equation of state 

(2.6) 

One can think of this matter as consisting of a gas with equation of state p = 5 p  together 
with a distribution of dust of density 7r k ; this is physically reasonable provided p L 0 
for 0 s r s b, i.e. 

4 2 4  (2.7) 

-1 2 

the equality occurring on the boundary r = b. If 

q'l (2.8) 
(2.7) is satisfied throughout the range (2.3) of r provided b is given by 

sin2 kb = (q - 1)(4q2- l)-'. 

P ' O  P L O  

(2.9) 

Henceforth we shall assume q satisfies (2.8). The solution then has 

with the equality occurring only at the boundary r = b. 

These can be obtained by transforming to local Cartesian coordinates 
Conditions also have to be satisfied along the central axis of the distribution r = 0. 

x = r cos 4 y = r sin 4 

and requiring that g i k ,  as functions of x and y, tend to Euclidean values and be of some 
suitable differentiability class, say C 3 ,  as x + O ,  y + O .  One can check that these 
conditions are satisfied for our solution; they also entail the satisfaction of the physical 
requirement ap/ar + 0 as r + 0. 

We have shown that the metric (2.1), subject to (2.2), (2.3), (2.8) and (2.9) 
represents a physically reasonable interior space-time. In the next section we shall 
match it to a vacuum exterior. 

3. Matching to the exterior solution 

The most general solution of the vacuum equations for a diagonal metric with g,, = -1 
and the remaining g i k  functions of r only is 

(3.1) d s 2 =  -dr2-P2(r-u)2"1 dz2-Q2(r-a)2n2 d4 '+SZ( r -a )  2n3dt2 
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where P, Q, S and a are arbitrary real constants, and nl, n2, n3 are real constants 
satisfying 

(3.2) 2 2 2  n l+n2+n3=  1 n l  + n 2  +n3 = 1. 

(3.1) is a simple coordinate transformation of the LC metric for the exterior of a 
line-mass. In the form given here it may be recognised as a complex transform of the 
Kasner metric (Misner et a1 1973). 

We can parametrise n l ,  n2, n3 by 

n l =  - 2 m ( 1 - 2 m ) ~ - '  n 2 = ( 1 - 2 m ) ~ - '  n3 = 2 m ~ - '  

M = 4m2-2m + 1, (3.3) 

m being a constant which we take to be positive because it plays approximately the part 
of the mass per unit coordinate length, as will be shown in the next section. We shall 
also find that m has to be less than a. The ranges of the coordinates will be taken as 

r s b  --oO<z<oo OSq5S27  - - o O < t < a ) .  (3.4) 

The hypersurfaces q5 = 0 and q5 = 2 7  will be identified; this is necessary so that we can 
match (2.1) and (3.1) (see below). 

The metric (3.1) has the curious property of being flat for two values of m, namely 
m = 0 and m = $. It would be interesting to understand physically how increasing the 
mass per unit length sufficiently can render space-time flat. Our interior solution 
throws no light on this because the greatest value of m attainable is $. The constants P, 
0, S can be removed by a scale change of coordinates, but we keep them as they will be 
needed in the matching process. 

We must match (2.1) and (3.1) on the hypersurface 

H : r = b  --co<z<Co o s q 5 s 2 7  - - cO<t<-oO.  (3.5) 

With respect to this hypersurface, (2.1) and (3.1) are in gaussian coordinates and these 
constitute admissible coordinates in Lichnerowicz's sense. Hence we simply demand 
that the gik and their first derivatives be continuous on r = b. This leads to six equations: 

(3.6) 

(3.7) 

P2(b -U)'"' = u; ' '~  COS' kb 
Q2(b - a ) 2 n 2  = k-2 ub - ' I 3  Sin2 kb, 

S2(b -a)", = u; l3 ,  (3.8) 

n d ( b  - a )  = +2q){(q - l)/[q(4q - 1)111'2 (3.9) 

m / ( b  - a )  = fk(l+2q){(4q - l)/[q(q - 1)111/2 
nJ(b - a )  = $k[(4q - l)(q - l)/q]1'2 

(3.10) 

(3.11) 

where ub is the value of U on the boundary r = 6, which is in fact equal to q. Dividing 
(3.9) by (3.10) and inserting the values of n1 and n2 from (3.3) we obtain 

(3.12) 

and using this we find that (3.9)-(3.11) provide only one other distinct relation, namely 

(3.13) 

We see that since k > 0 and the right-hand side of (3.13) is positive, b - a  > 0, and since 

m = (4 - 1)/(4q - 11, 

k ( b  -n[q(4 - 1)(4q - 1)]1'2(4q2-2q + l)-'. 
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r a b ,  r - a  cannot vanish in (3.1). Because of (2.8) and (3.12) we can see that our 
solution will apply for values of m lying between 0 and $. 

We can summarise by saying that all the boundary conditions are fulfilled provided the 
constants satisfy (2.8), (2.9), (3.6), (3.7), (3.8), (3.12) and (3.13), and the metrics (2.1) 
(with range (2.3)) and (3.1) (with range (3.4)) then give a globally regular solution of 
Einstein's equations referring to a line-mass of perfectfluid. The solution has no horizon. 

4. Physical interpretation 

The solution depends on two arbitrary constants k and 4, in terms of which all the other 
constants may be expressed through the relations referred to. k and q may be thought 
of as determining the interior matter distribution: k the underlying dust density, and 4 
the central pressure p o  of the gas, which is given by p o  = ( 6 r ) - ' k 2 ( q 2  - 1). 

The exterior metric (3.1) also seems to depend on the two constants k and 4, and this 
may be surprising because the Newtonian gravitational field of a line-mass depends only 
on the mass per unit length. Can we use coordinate transformations to remove one of 
these constarits? The transformation 

f = r - a  i = P z  i = Q 4  I=  St, (4.1) 

reduces (3.1) to 

(4.2) 
ds 2 = -dj2 - p 2 n ~  d i 2  - j 2 n 2  d&2 f j Z n a  d p ,  

in which, as we see by (3.3) and (3.121, the only constant appearing is 4.  Though valid 
locally, this transformation is globally unacceptable because the new coordinate 6 no 
longer satisfies (3.4). In fact & satisfies 

0 s  4 s  27rQ (4.3) 

so Q (which contains both k and q ) ,  though it has disappeared from (4.2), now appears 
in the range of the coordinates. We conclude that the transformation (4.1) does not 
remove one of the constants from the exterior space-time. (There is no objection to 
using (4.1) to bring g i z  and g i f  to the forms shown in (4.2), but Q cannot be removed 
from g++ in this way.) A similar conclusion follows if we keep the range of 4 constant 
and try to remove the constant k by a transformation of the form 

H ( i )  = r - a  i = P z  i = d  I=  St, 

where H is an arbitrary function. 
One can check that, as r + CO, the physical components of the Riemann tensor 

(obtained by resolving the coordinate components along the legs of a suitable 
orthonormal tetrad) tend to zero, so the space-time is locally flat at spatial infinity. 
Globally, however, the three-spaces t = constant are not Euclidean at infinity, as one 
can see by considering the ratio of the proper circumference to the proper radius of a 
circle in the two-space t = constant, z =constant: 

circumferencelradius = 27rQ(r - a)"*/r.  

Since n2 < 1 for m # 0 this ratio tends to zero as r + CO and the space closes up. 
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We shall now show that m is approximately the active gravitational mass per unit 
coordinate length, mG. We can calculate the exact value of mG by using Whittaker’s 
(1935) expression 

mG = /ob/01/02= (p + 3 ~ ) ( - g ) ” ~  dr dz d 4  

where g is the four-dimensional determinant of the interior metric (2.1). It turns out 
that 

mG = m(1  - 4 m 2 ) - ’ ,  

so that for the range of our solution, namely 0 < m < $, m - mG. 

5. Conclusion 

We have obtained a global solution of Einstein’s equations for an infinite line-mass 
made of perfect fluid with a particular equation of state depending on two arbitrary 
constants. It turns out that both these constants are also needed to describe the exterior 
field. This feature, not present in the corresponding Newtonian case, is connected with 
the topology of the space resulting from the presence of the infinite line-mass. This 
topology is also responsible for the property that, although the space-time tends to local 
flatness at infinity, it is not globally flat. 
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